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Preface

This is an adventure story, intent on going to
curious places and engaging problems difficult
enough to instigate new approaches to problem
solving. To keep thingsteresting, we will @-
liberately increase the risk of our adventure by
getting ourselves inteeeminglyimpossible gt
uations on the assumption that the deeper the
trouble the better the story. We will do this by
creating chaos as weanderfortuitously from
one problem to the next. Much to our surprise,
this seeminghaimlessapproach will serve us
well in that it will teach us that the main part of
our job is to figure out that solutions to some of
our mostpressingoroblems already exist. To
enliventhe storyfurther, we will cast the pn-
cipal player; biology- as both hero and antis

ro by juxtaposing it, as it exists tmw we think

it exists.

We already know what happens when we take
biology apart, but we have absolutely no idea
what to expect when we put it back together.
Since this iexactlywhat we are about to do,

we find ourselves face to face with one of the
mostintimidating problemsimaginableg bio-
logical complexy.

The first thing to know about complexity that
it comes with its own set of ruledt considers
many ofour currentrulesasbubbles well rip-
enedand ready to burstSuccess, we will gl
cover, often requires little more thasimply
changing our perspectiviecom upside down to
right side up.Acceptablecanbecome una-
ceptable and unacceptable acceptable.

Since busting bubblesan have serious coes
guences, we must proceed prudently. To be
fair, we agree at the outset to fix whatever we
break. As we work our way through several
bubbles, the narrative will accumulate a body of
evidence suggesting that our current@pach

to complex problem solving in biology is sadly
amiss- largely because it relies heavily on a
theory structure bound tightly to reductionism

Here ighe problem. We have a sciengealled
biologyc that lacks a mthematical foundation
and can produce data so corrupted by bias and
biological variatiorthat the original information
often becomes unrecognizable. To maketma
ters worse, we assume that we can study tiol
gy by reducing itsamplexityto a simplicity
characterize its parts in isolation, and then use
the resulting information to explain biology as it
normally exists. We dig the hole even deeper
by assuming that our methods allow us te-d
tect biological changesvhen often the best

they can do is detect significant differences-b
tween heavily biased data sets. Consequently,
the data we publistall too often standlittle
chance ofepresenting biology, asis.

Now, we come to the more challenging paft
our story. Biology exists as a mathematical
powerhouse running systems so complex that
they defyevenourimagination. In short, biot
gy uses ruleand algorithmgo produce awul
maintain a complexityhat we call a phenotype
(FigureP.1).
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Figure PL Biology follows a rulebased approach for
producing, maintaining, and adapting phenotype©ur
adventure becomes pe of finding a mathematical route



from phenotype to genotype, usingublished dataas our
compass.

For biology, a phenotypie an optimized ve
sion of an intelligent, battle tested, complex
seltadaptive system. It represents natuaeits
best. For us, the phenotype remains largely
inaccessible because of our collective indife
ence to biology as a complexitysiven theri-
formation in FigureP.1, however, we now have
a road magpo this phenotypewith all the a-
rows pointing in the right directions. Tone
brace complexity and reinvent biology as a
guantitative sciencgall we have to do is dupl
cate FigureP.1 using data from the biomedical
literature (FigureP.2) ¢ provided we can rsolve
the thorny issue of data access.
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Figure P2 Reading a phenotypenathematically involves
managing the destabilizing effects of our experimental
methods and learning the rulesf complexity from biolo-

gy.

The first thing we notice after comparing these
two figures is that our job looks even harder
than the one belonging to biology. By taking

biology apart to study it, we unwittingly add
multiple levels of complexitio an already
complex biology. Before we can access the
phenotype we have to delete the extraneous
complexities and then figure out how to read
biology mathematically.

As the storyunfolds we will eventuallydiscover
that it takes a complexitto solve a complexity.
Since we as investigators have little or no
practical or theoretical experience in dealing
with biologicalcomplexity we will have to

come upwith a new theory structure for biot

gy, one that will guide the wayln time, we will
identify a parallel complexityas a major prb-

lem solver because it effectively recruits biology
to do most of the heavy lifting for us. theory
structure capable of producing these parallel
complexities gives us the advantage of being
able to interact with biologynathematically. If
we have a problem and can set it up correctly,
biology always seems to have a solution waiting
for us.

Our foray into complexitgeems well timed in
that the biology community currently finds itself
under attack from our statistical colleagues

a scathing article, loniades (2012)ggests that
as few as 20% of our publishedpers may be
correct, whereas Colguhoun (2014) puts it at
30%. These are serious people making serious
allegations. Moreover recent editorial irthe
Journal oBasic and Applied Social Psychology
openlyrejectsthe prevailing view that a sigmif
cantdifference in biology can be set at the 95%
(PA0.05) level. In facthe journalno longer
accepts papers unless they reach a significance
level of 99% (R0.01). If we applied such ayi
orous standard to our bimedicalliterature,

many of our publishedasearch papers would
effectively disappear.

But, why are statisticians so unhappy with us?
When we collect data from biology, two major
factors come into play bias and biological va
iation. Such factors conspire to redulgeth the
reliability (recision) and validityatcuracy) of

our data. This means that we often end up with
noisy data capable of detectimgainlylarge



changes. Instead, statisticians want quret
producibledata capable of detecting small
changes. Tik takes us to a largelynapprecid
ed, but relevant point. Both bias and biological
variation deriveg at least in part; from reduc-
tionist theoryand from the preferences of sta
isticians.

Although biology allows variatip it allows far

less than what statisticians would lead us to
believe. The isolated dafavored by statigt

cians tend to maximize variation, whereas the
connected data of biology does quite the app
site. Moreover, biology is enély capable of
supplying us with valid data, which, in turn, we
can use to minimize the effects of the biases we
create with our methods. In other words, if we
want to, we can produce much quieter data.

Quiet datainterest usherebecause theyghow

the patterns, equations, rulesnd algorithms
biology uses to run its business. Since biology is
in the business of optimizing outcomes imco
plex systers, access to quiet data gives us a
cess to a wealth of proprietary information. As
the story unfolds, we wilkarn touse such
privileged infomation to ourmutual advantage.

A few, brief @ampleswill help to show where
this story is goingFirst, however, we need to
plant our feeton slid ground Although most
experts in academic and corporate circlden-
tify biologyasa descriptive sciengeomplexity
theory takes adecidedlydifferent view. It pre-
fers realityto convenience Biologyis a descp-
tive sciencenow becomes biology is a quarait
tive science Bychanginghe definition,com-
plexitytheory compekall parts of our storyto
obey themathematicalkulesof biologyg even
when we have no idea what they might be.
Given this neweality, part of our mandate le-
comes one ofinding and burstinghe many
bubblescreated by theassumption®f a de-
scriptive scienceThe exampléo follow shows
how easy it is tayet ourselves into deep trouble
by burstinga bubble fundamental to exper
mental biology as it currently exists.
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Most of us would agre that the primary goal of
scientific studies is to detect changes dod
explain why they occur. divever, reporting
changes in biology nourishes anormousbub-
ble. Why?Manylaboratoiiesand clinicxollect
dataas concentrationswhich, in turnthey use
directlyto look for biological changedrecall
that a concentration(A/B)includes two values,
a numerator(A)and denominato(B) Drawing
from our training in chemistry, we know that A
can changgebut B will remain constant because
it represents a standardnit of volumethat
conveniently cancels owthen the change is
calculated This gives us one value for theneo
trol (Ao) and another for the experimentdhy,)

- everything appears to be in perfectly good o
der © = Al/Aw). Here changeld)) works.

When it comes to comparing concentrations
however, chemistry has one set of rukasd
biology another. In an experimental setting, we
can expect chemistry to have two variables in
play (D= Ai/Aw), but biology withts added

load of complexitywill have four:(D = (A4/By)/
(A Byo) because Br' B;. In a biological setting,
comparing concentrations produces uninte
pretable results on a vast scale. Since most
photometric measurements (i.eoptical dens
ties) qualify as concentrations (Bolender, 2007
2007A, even biochemistry contributdsand-
somelyto the bubblewhen its data are related
to a biological reference This selfinduced cla-
o0s isone ofthe enduring legaesof our de-
scriptive gience Compelling gidencefor the
existence ofoo many variablei play appears
throughout the literatureas disagreements,
inconsistencies, and irreproducible results

In short, there are reasons for concern. As a
compkex and highly adaptive organism, we can
adjust to even the harshest of research env
ronments. Unfortunately, we may be reaching
the limits of our endurance. A wetained n-
vestigator with years of experience in thebi
logical sciences is likely to pnack a list of real
world hazards similar to the one given below.
Our purpose here in preparing such a list is to
assure the reader thatll the itemsincluded



therein belonglargelyto the same problem.
Moreover, the list serves as a convenient score
card for the game we are about to playrhe
solution, as the book will explairequireslittle
more than sliding biology from one theory
structureonto anotherc¢ from reductionism to
complexity. The list highlights the realities of

our working conditions.

Acceptance of a descriptive science
Acceptance of a methoeldriven science
Acceptance of faulty assumptions
Uncontrolled experimental bias
Uncontrolled biological variation
Uncontrolled false positives and negatives
Uncontrolled ambiguity
Inadequate theory structure
Inadequate research model
. Inadequate publication model for research data
. Inability to reproduce resulteoutinely
. Inability to detect biological changes reliably
. Inability to quantify phenotypesxhaustively
. Inability to deal effectively with biological complexity
. Inability to correct methodological distortions
. Inability to access biological information
. Absence of first principles
. Absence of data connectivity
. Absence of objective diagnosis and giction
. Absence of mathematical markers
. Absence of a universal database for published data
. Absence of a common language shared with biology
. Absence of published data compatible witiology

©oNO WD PR
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A wod of caution is in order. His book is a

hard read. The merconcept of biological
complexityis still so far beyond our comprehe
sion that most reasonable people avoid itaalt
gether. To make matters worse, biology is only
one part of a much larger problem. All of our
methods for cdlecting and interpreting data
contribute yet another level of complexitg

that of biology. This means that gaining access
to the core principles of living systems requires
the unfoldingof two interacting complexiés-
simultaneouslyFigure F2). Since this oper

tion involves a monumentalliedious array of

11

details and arcane arguments, we aiicede to
treatingcomplexity as a simple game that we
can learn to play with biologyone move at a
time.
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Introduction

What is a complexitgame and why do we want
to play it with biology? Biology plays thento
plexity game by translating its rulgsroce-
dures, and outcomesstoredlargely in the g-
nome- into phenotypes that can do extraard
nary things. A phenotypepresents a sna
shotof an individuaht a given point in time,
linkingthe past to thepresentand the present
to the future. By playing theomplexity game
with biology, we gain access to this plogype
along witha newstrategy for interacting with
biology.

TheProblem

Biology operates as a complexityherein it
defines and is defined by its parts and coone
tions. Inspite of this reality, we continue to
study biology not as a complexity, but asan-
trived simplicity. Our current theory structure
operates on the assumption that we can take
biology apart, understand the parts, and sabs
guently undestand biology. The problem with
this approach is that it lacksn appreciation for
the orderthat comes fronthe connectivity of
the parts andhe emergent propertiesrising
therefrom. Moreover, byexchanging reality for
convenienceave invite the penalty of unintend-
ed consequences.

Few realizefor examplethat a theory strie-
ture based on reductionisiimits our ability to
create a mathematical foundation for biology
analogous to those basic fihysicsand chens-
try. Bytaking the complexitput of biology, we
dzy g AGGAy3te FolyR2Y
mathematics. This explains why biologgr
mains a descriptive scienc&he underlying
problem is one of dimensions. Redioctism,
whicheliminatescomplexity byremoving its
connectionsalso eliminates one dimension of
the biologicalinformation. The remaining parts
represent points (data) thatow exist in zere
dimensional space(Recall thastatistical the-
ry dealdargely with the behavior osuch data

points.) As a complexity, howevea,living a-
ganismmustoperate ina dimensional space
higher than zero becausemust accommodate
linear stringqpatterng consisting ofparts and
connections The unavoidable truthisthat bi-
ology,as an experimental scienogperates on
the riskyassumptionthat we can usésolated
information existingin zerodimensionakpace
to explaincomplexevents occurring in higher
dimension®
1991)offers a gentle introduction tehe prob-
lem ofinformation flow by describing what
happens when we viethe same world from
different dimensions

Since we can be reasonably confident that-bio
ogy defines and executes its fuimns by rule
our main jobherewill consist of assembling a
complexityparallel to the one of biologyg using
amoreinclusive theory structure. We willsdi
cover that by restoring the complexity vean
resore the mathematicglong wih manyof its
rules This represents an import step because
gquantitative approaclallows us to play a far
better game with biology

The complexitygamewe are about to playnust
rank asone the most challengingltcomes
without instructions and the user gets ted
termine the length of the game, the level of-di
ficulty, and the size of the prize. When playing
the complexitygame with biology, however, it
is up to the player or playersc to disover the
rulesand then figure out how to make the right
moves on the right playing fieldExperienced

0 A 2 playessshayg thediistingr &lvagtage gf kngwing

that teaming up with biology all but guarantees
a win. Biologwylready knows all of the rules
moves, and playing fieldsd seems perfectly
willing to sharehis knowledgewith us.

Theory Structure

Thebookintroduces the reader to complexity
by playingsixgames in order of increasing daiff
culty. Theory structure plays an important role
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in that it guides the tasks of constructing the
playing fieldsand figuring outo play agiven
game.

Figure0.1 indicaes that reductionist theory
directs the first gamewhereasthe remaining
games work together to assemble and test a
new theay structurebased orcomplexity No-
tice in the figure that the first two games rely
exclusively on th@ostmortem data of biologr
cal stereologywhereas the remaining four use
data collected with MRfrom living subjects.
This distindbn is important becausee will
discover thaia starp line exists between tlse
two datasources

Tworemarkablethings will happen as we make
the transition from the simplicityf reductian-
ismto the complexityof biology. We wilte-
velopan unexpected coidenceand skill in @-
signinggamesof increasing complexitgnd, at
the same timetake comfort fromthe discovery
that the harder the game, theasier the sal-
tion. Lest we forget, however, our story begins
at the point where have absolutely no idea
abouthow to study biology as a complexiy
even if it is possible.

PLAYING FIELDS THEORY STRUCTURE
Game 1 - Reconnecting Data

Stereology Literature Database | ¢— REDUCTIONIST THEORY
Postmortem Data

Game 2 - Finding the Rules

Universal Biology Database —

Postmortem Data

Game 3 - Parallel Complexity

MRI Database —>

Living Data

Game 4 - Reconciliation

All In Database —_ COMPLEXITY THEORY
Living and Postmortem Data

Game 5 - Diagnosis

MRI Database —>

Living Data

Game 6 - Modular Disease

MRI Database —>

Living Data
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Figure0.1 Playing the complexitygyame with biology.
Notice that the games, which begin with stereological
data derived frompost-mortem samples, quickly po-

gress to MRHata derived from living individuals Each
playing fieldconsists of one or more relational databases.

Playing a complexitgame requires meticulous
attention to detail and a steely determination

to recognize reality and play accordingly. Star
ing a complexity game with biology, however,
can be a somewhat unnerving experienee b
cause all such games must begin in the altered
reality created by reductionism

Everyone knows that modern investigative Ibio
ogy plays largely by the rule$ reductionism
This theory structure reduces tleemplexityof

a living organism into a subset of isolated parts,
but, at the same time, its methods quietly-i
troduce artificial properties. Parts prepared for
a stereological analysifar example, may exg
rience as many as thirtthree operations that
candistort reality (Bolender, 2003)along with
the postmortem consequences of going from
living tolifeless. In spite of convincing evidence
to the contrary, mosbiologists still consider
reductionist data a valid representation of bio
ogy. This assumption, perhaps more than any
other, deprives biology from enjoying timeany
advantagesntrinsicto sciences based on first
principles Putsimply, reductionist data will
continue to make important contributions, but
they will be largely ineffective in dealing with a
host of pressing problems swirling around the
real world of biological complexity

Complexiy theorytakes its rulegrom biology

as it normally exists and as it exists for usn-Co
sequently, we wilbe dealingwith two interad-
ing complexities, one coming from biology and
the other from the distortionsve createby cd-
lectingdata. Until the game advances to the
point where thesédwo complexitiesbecome
separdle, we will be playingvith a handicap
The best we can do in the early games imio-
imize the distortions and focusur attention on
finding patternsin data collected with stere
logical methods. Such datae essentiabe-
cause theyallow us to quantify biological parts



of all sizes and shapes in terms of volumes; su
faces, lengths and number#oreover,mor-
phological dataepresent the basic building
blocks ofa phenotype

Games

A complexitygame proceeds from one playing
field to another by making moves that define
the properties of thesubsequenplaying field.

In its turn, each playing field supplies new forms
of information with new data formats and pa
terns. Sincepatterns reflect underlying rules
they usualy offer the best cluefor figuring out
what biology is doig.

In the text, a move begins with a question litg
lighted in blue and concludes with a color
coded answer a green text box signals a win,
red a loss. The intervening text includes the
strategy behind the move arglippliesthe
methods, results, anthterpretations If, as the
game proceeds, you become lostraissthe
point of an argumentyou can alwaygo back
to the original papers, reports, guides, ortsof
ware packages for helgNote: Some of this
information is available online at enterpriseb
ology.com)Many of thedetails related to the
stereologicamethods of data collection and
manipulation lie well beyond the scope tbis
bookand can be found elsewhe(e.g.,Weibel,
1979 Gundersen et al., 18 CruzOrive and
Weibel, 1990Bolender efal., 1995 West,
2012.

Background

The central strategy of the project consists of
extracting data from the biology literature and
then using them to discover how biology ape
ates mathematically. Since biological complex
ty resides in the volumes (V), surfaces (S),
lengths (L), and numbers (N) of its parts and in
their connectionsstereologybecomes the
method of choice because it can estimate these
parameters with unbiasedampling methods

In effect, stereology is ideally suited to the task
of dealing with biological complexityat all
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levels¢ in both living and nonliving subjects
Moreover, t allows us to acceghe phenotype
as aset ofnestedcomplexitesexistingin n-
dimensional space

Before the games can begin, however, we have
to redefine our relationship to the biology lite
ature. By entering stereological data intoea r
lational databasgthey begin to loose theim-
posedisolation by becoming part of a large and
coherent data set. The advantage of this new
arrangement is that it allows us to look for local
and globabatterns in published data. @,

but not always, localill refer to the data of a
single papergroupor individual whereas glb-
alidentifiesdatacomingfrom manydifferent
papers groups or individuals

Complexity consists of patterns that display
mathematical properties. Hse patterns will

first appear as absolute data (V, S, L, N) fitted to
regression lines with coefficients détermina-

tion (R) equal to 0.9 or better (recall that as the
R approaches 1.Qjata points distribute either

on or close to their regression lineRs close to
one tell us that the relationship of one part to
anothersuggesta mathematically definedre

der.

Whenever we collect data from biology,\we
ever, our methods invariably introduce unee
tainty. Recall that stereological estimatearry
anunknown burden of biases related to the
preparation and analysis of biological sampjes
particularly when taken postortem. Alt-
hough we can be confident that the design
based metlods of stereologguarantee unb
ased estimates derived from both living and
nonliving sourceswe caralso guarantee that
different sourceg; living and nonliving can
give different estimates for the same pags
depending on the distortionfiases)ve intro-
duce experimentally

We will discover that ne way of mitigatinghe-
seexperimentally induced artifacts is to form
data ratiosthat can minimizethe effects of the
distortions This strategy also makes sense
mathematically because the dashowthat bi-



ology exerts a greater level of control on the
ratio of its parts than on their absolute values
Adults of different sizes, for example, frequently
disply the same pas with different volumes,

but similar ratios.From this, it follows thaab-
solute valuegan be expectetb exhibitmore
biological variationhan when expressed a=-
tios. In short,forming ratioseffectivelymini-
mizes distortionsin our data produced bgx-
perimentalmethods andbiological variation.

Notice that byreplacing absolute valueasgith
ratios, we are following a deliberate strategy
designed to take our cues directly frorology.
We will discover that the rewards of such an
approach can be considerable. By deferring to
biology, it will do most of théard workre-
quired to get us to oumnitial goal ofconstrua-
inga parallel complexitg our proxyfor biology
as it actually exists.

For convenience, weill begin by defininghe
ratio of parts as a data pair (AX:BY) wherein two
named parts (A, B) are connected numerically
by the ratio (X:Y). (Note: dividing Y by X Xets
1.) By reconfiguring the stereologiterature
database as data pajra/e obtain auniversal
biology databasewherein all thepublishedda-
ta share exactly the same format. Optond-
ly, this relationship of part (A, B) to connection
(X:Y) defines a unfte., anelement)of biolog-
cal complextyy, onewith universal connectivity.
Given this more convenient data typee will

be able to findquantitative patterns practically
everywhere we look.

Of course, searching for patterns in data aggr
gated fromthousands of papers becomas
challenging and very time consumitagkbe-
cause the ratios (X:'gupplycontinuous (i.e.,
analogu@ values. This limitatiowill be easily
overcome by assigning each data pair ratio to a
decimal step (or bin) and then fitting these irat
os to a regression equation (YZpXvherein the
values of the exponent a and tlweefficient of
determinaton () both approach one. With
such an arrangement, the power equations
(Y=bX) approach linearity (Y=bX) and predict
the original values with a maximum error not
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greater thant15%. In effect, this reduces the
stereologyliterature databaseto roughly 100
equations, wherein every data point defines
and is defined by an equation.

These new decimal bins not only speed the task
finding localand globabatterns, but they also
play a pivotal role in assembling the playing
fieldsfor our complexitygames. Moreover,

chaos theoryprovides someddedcover. By
shifting our data from an analogdntinuous) to

a digital(stepped) platform, we move them
slightly away from their original order and-t

ward the edge of chaoshere they become
infinitely more interesting and informative.

Notice the strategyn play. By translating the
isolated dataof individual papers into a large
digitalliterature consisting of standardized data
ratiosand equations, our data can detegtian-
titative patternsand generate data sets large
enough to qualify as a parallel complexity
usingtheseratios to assemble playing field$
increasing complexitgX:¥Yi X:Y:4 X:Y:X b 0 £
we canbegin toattack difficult problems with
surprising ease. Keeping everything on ahlmat
ematicalfooting keeps biology in the loop and
allows us to benefit handsomely from our vast
investmentsm basic and clinical research.

Several examples Weerve to illustrate how
dataratiosprovide a wealth of new information
about the mathematical underpinnings of bio
ogy. Of special interest is the finding thab-bi
logical parts and connections display valences
andstoichiometries analogous to those found in
chemistry. Biology uses the same strategy seen
for elements andnolecuksby allowingthe

same two parts to form different ratiosThis
flexibility greatly increases the number ofgo
sible outcomes including emergent properties.
By increasing its potential for variation and
adaptability, biologypresumablyimproves its
chances fosuccess andurvival. The samepa
plies to us. By becoming privy to a strategy of
such fundamental imgrtance to biology, we

find ourselves in a much stronger position to
askprobing questions about how we currently
collect and interpret our data. If biology wian



ed to give us a friendly nudge in the right dire
tion, revealing its se ofratios andvalences
would be a clever way of doing it.

As the chapters unfold, we widiscoverhow a
giventheory structure in biology comes with its
own set of rules often producing damatically
different results. Change in biology, for exa
ple, represats an enormously complex event,
wherein a given part influences and is unfl
enced by darge number obther parts and
connections.In contrast, dentifying a changan
a single, isolated part ignoreslmost entirely-
the true nature ofchange in biology. Moreover,
isolated datararely contain enough information
to get to the right answer. By looking at such
truncated data through the lens of complexity
theory, wecanbegin to understand why theory
structureplays such maimportantrole in the
discovery process

All games seem to involve an element of luck,
and our complexityames are no exceptiorA
chance encounter with an Internet database
containing MRUdata from humarbrainsproved
to bethe game changerlt allows us to make
keyconnections betweerheory structures (-
ductionismto complexity) and parallel compte
ities (livingto nonliving) Moreover, byconvet-
ing MRI data intenathematical markerswe

can produceplaying field capable of diagnosing
disordersof the brainobjectivelyand begin to
understandthe role that quantitativerelation-
ships play in the disease process

We willalsodiscover that he brainuses many
of the same parts and connectiogscting as
modules¢ to assemblea wide range of diffe
ent disorders Once again, wind biology -
configuring itself to create new emergent jro
erties¢ atheme repeatingelentlesslyat all
levels of size The big surprise is that these
markers reveal a level of complex#y ena-
mous that even thdig data technologies of
today may not be up to the task of explaining
how these disorders appear and develop. Of
one thing, however, we can be certain. The o
portunities created by mathematical markers
for triggeringadvanceain our understanding of
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biologyare likely tosurpass even our mospe
timistic predictions.

There is more. The MBatabase of living
brains can do something that the stereology
database opostmortem brains cannot.Only
living brainsare capable of displayingroutine-
ly - identicalpatterns both locally and globally
We will use this remarkable property as acid
test for determining he validity ofbiological
data.

Considewhat thistest will tell us. When we try
to diagnose disorderns postmortem brains
usingmathematical markerserived from their
living counterparts, we withe disappointed
consistently. Thiresultsfrom the fact that -
actly the same parts in living and nonliving
brains display different ratios and consequently
different markers. We will use this inconsiste
cy as an opportunity taentify and remove the
distortionsthat exist instereological datavhen
they comefrom nonliving sources.

Challenge

Biology as a science faces a major challerge g
ing forward in that it owns the responsibility of
unraveling the complex relationships of genes
to phenotypes. Thiseans that stereology

with its extraordinary ability to quantify stod
ture - becomesacritical player in working out
the complexityof phenotypes because it can
provide estimates for parts and connections of
all sizs¢ seamlessly throughout the biological
hierarchy The immediate challenge for theest
reology communitypecomes one ofleman-
strating ¢ not just assuring ¢ that equivalence
exists between data sets derived from living and
non-living sources.

Story

This book summarizedteen yearly reports
(20021-2015) of the Enterprise Biology Software
Project (Figur®.2). Since these reports assume
a working knowledge of biological stereology
readers unfamiliar with this method may miss
some of the subtleties surrounding the fart



coming games, moves, and interpretations.
Consequently, care will be taken to explain
what is going on behind the scenes.

ENTERPRISE BIOLOGY SOFTWARE PROJECT
i REDUCTIONIST THEORY —
STEREOLOGY LITERATURE DATABASE MRI DATABASE
POSTMORTEM DATA —l LIVING DATA
CORRECTIONS ——  DATA RATIOS 4—'
COMPLEXITY THEORY
MATHEMATICAL PATTERNS © EQUATIONS
il ©MATH MARKERS
©STOICHIOMETRIES
UNIVERSAL DATABASES ~© VALENCES
' © GENERALIZATIONS
PARALLEL COMPLEXITY
BIOLOGICAL COMPLEXITY
PHENOTYPE © DIAGNOSIS
© PREDICTION

Figure0.2 The Enterprie Biology SoftwardProject ex-
plores the relationship of biology to theory structure
outcomes It currently provides mathematical access to
the phenotypeand perhapsin time to the genome.

Beforeplunging into a seemingly endless-p
rade of figures and arcane details, it may be
helpful to begin with a brief summary of the
complexitygames and their outcomes. This
offers the reader a quick overview of what to
expect.

Perceptiors

Our move nto a theory structure based ondgi
logical complexitwill introduce a number of
fundamentalchanges in the way we think and
operate. The following list offers a preview of
these coming events.

1. Patternsreplace individual data points as
the primary source of biological info
mation.

2. Thebiologyliterature ¢ expresseds auni-
versal biologyatabase becomes a single,
globalexperimentto which each new publ

cation cantributes its data.In effect, the
literature becomes the phenotype.

3. Data interpretation requires an active leo
laboration with large scale databases-d
rived from the biology literature.

4. Experiments involveatge numbers of ao
nected patterns{10° 10°X 10") rather
than small numbers of isolated dafmints
(~101 109).

5. Change in biology much a complex event
that its interpretation requiresollabom-
tion on a massive scale

6. Valenceserve todefine structural patterns
in health and disease.

7. Data ofthe basic and clinical sciences inte
act seamlessly within in the framework of
universal biology databases.

8. Decisionmakingderives fromthe collective
knowledge contained within universal Ibio
ogydatabase.

9. Playing fields definthe games and their
outcomes.

10. Gold standard$or biologcal information
come from living systems.

11. Parallel complexities operate on rulaead
algorithmsconsistent withthe mathemat-
cal core of living systems.

12. Interpreting experimental outcometypicd-
ly involvesghe management of multiple
complexities simultaneously.

13. Data from nonliving sources cannot be-e
pected- a priori- to duplicate those of li-
ing ones.

14. The humanbrainin health and diseasad-
heres toa modulardesign.

15. Theory structure influencesxperimental
bias and biological variation

16. The theories of reductionis@nd complei
ty combineto form a theory structure &-
pable of supporting the biology enterprise.

Our current mindset in science revolves around
the concept of variables (x,,ywhich relate to
oneto the other by some function (f(x) y. In
contrast, biology seems to prefer fparns ex-
pressed as numerical ratios, which it uses to
generate complexitieandemergent prope-

ties. Consequently, we wakplorethe ratio-
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based pattern®f biologywith stochiometries,
valencesFibonaccseries, harmoniesjesign
codes, polynomialsnathematical markers
modules graphs,andcluster analyss.

BiggerPicture

We - asa scientific community live in a world
constructed as aimpicity, wherein ourbiolog-
calinformation consists largely of disconnected
elements. Biology, on the other hand, livés a
complex worldwvherein these samelements
exist in a highly connected statélthoughwe
often recognize thinconsistery, we seem
perfectlywilling to accepthe ways thingsare.
This, of course, imposes limits on what we can
do.

Byplaying the complexitgame we address
two compelling giestions. How do we go from
state A (simptity) to state B (compléty) with
aminimum amount of discomforand ismaking
such a tripreallyworth the effort? In attemp-
ingto answer these questions, weill be pu-
ting ourselves ira curious positionWe will
have to decide if we argoing from fantasyA)
to reality (B)or just from one fantasy to anht
er. Making such a distinction will requieenew
type of information, oneproduced bycombi-
ingthe data and expertise dhousands obur
bestscientistdnto constructscapable ofad-
dressingeal world problems.In effect, we will
have tofollow the datato wherever they lead

Fortunately, he games which aredriven by
data andoften riskymoves will flush outmore
than a few startling surprises along the way.
Biology - as a neutral referee witimpeccable
credentialsc will serve aghe presiding judge
Such an arrangement requires that we take a
first principlesapproach, one that p&t evey-
thing tothe test by biology and by aope else
willing totry.

Thedeepunderstanding to come from thisxe
erciseresults inaparadox mplexity turns
out to befar simpler than simplicitg, because
complexityruns ona mathematial platform,
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whereassimplicitydoesnot. If we are prepared
to listen, this is whabiologyis about to tell us

Language

For a science to work properly, it must include a
two-way communication system capable ofe
changing information between the partias-i
volved. In physics and chemistry, such a system
exists. We use first principles embedded in a
theory structure to interact mathematically

with the physical world. Although the science
of biology uses a similar theory structurer
ductionism), ilargelylacks frst principles, does
not speak mathematics, and ignores complexity.
By failing to interact mathematically with the
natural world, wecreatea language barrier that
prevents us from advancing beyond the level of
a descriptive (soft) science.

If, as sggested by Adami (2015)e can define
life asinformation stored in a symbolicra
guage, therour story about biological compie
ity alsobecomesa story about language. By
following the data, we willind that phenotypes
can in fact be translateshto asymbolic l&-
guage consisting of pieces of information (ene
dimensional stringshat connect in A
dimensional space, where@1. Using da&-
bases populated witstringsnumbering in the
millions, we willdiscover¢ much to our delight
¢ that we cancommuricatewith biologyobjec-
tively. When weposea question quantitatively,
biologypolitely responds wittan answet

The strings of our symbolic language, whith i
clude alpha names and numeric ratios, identify
patterns thatrelate our descriptive namefor
biological parts to the quantitative properties
given to them by biologySince biologyses
guantitative rulego form patterns, we wildo

the same.By allowing ar stringsto grow from
characters (mathematical markers) to words to
sentencedo stories, we will beduplicating the
syntax ofbiology. In turn, thesdinguistic
stringsgive us ahlieory structurebased on
complexity,detectfirst principles, speak mht
ematics, andallow us toset up andsolvedeli-
ciously difficult problems



Chapter 1

Game 1¢ Reconnecting Data

The first gameéakes its inspiration frona

month long think tank held under the auspices
of the SantéFe Institute whichis summarized

in a reportby Morowitz and Smith{1987). The
charge given tdéhe morethan fifty partigpants
was to figure out how t@rganize all of thelata
of biology therebyencouragng new connec-
tions, theory structuresand discoveries.

Complexity, as we all know, consists of many
parts and connections with logajldbal, and
emergent properties; all subject to rules If we
approachbiological data as eomplexity then it
follows that all the many parts and connections
must bequantitative and hierarchical. Thualy
biological methodtapable of delivering such a
wide-rangingdata setis stereology Recall that
this approachusesdesignrbased samplingat
estimatethe volumes, surfaces, lengths, and
numbers of biological parts of all sizederein
we findthe argument for designing, populating,
and testinga biology literature databasgopu-
lated with stereological data.

The first game sets out to reconnect the igoela
ed dataof the stereologyiterature, first by
storing them in the same place and then dy a
lowing them to interact.Note that eechgame
begins with a godbllowed by several moves
intended to achieve it.

Move 1: Can werganize biological data
within the framework of arelational data-
base?

Thepurpose of the movevas to takedatafrom
highly heterogeneous sources (research publ
cations)and standardizéhem. Aprimary e-
quirement was adatabase mod| capable of
accommodaing a majority ofbiologicaldata¢
includingboth structure and function.

This required access to thousands of reprints,
many of which were generously supplied by
members the stereologgommunity. TheEn-
terprise Biology SoftwarBrojectwas set up as
avehiclefor developingnew technologies and
returningthem along witha yearly reporto
contributing authors.Currently, theproject
supportsinvestigatorsvorkingin more than
forty-five countries.

1-1 RelationaDatabase

The elationaldatabasemodelincludes a struc-
tural hierarchy consisting of sixteen compar
ments hard-coded), twelve structural data
types pard-coded, and three functional data
types (usetdefined). It also includstablesfor
authors, citations, and method (Figure 1.1)
Notice thatthe database modelisestwo struc-
tural hierarchieg; one for control datgco)and
the other for experimentafex)- connected to
one another and to either aontrol or exper
mental data tdle.
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Figure 1.1The logicabatabase modefor the biology
literature includes a collection oéntities (boxes) and
relationships (lines)as defined by rulesf relational da-
tabases(From Bolender, 2001A)

In turn, the logical model of Figure Ib&comes
a physical modgFigure 1.2)whereinentities S

includethe columnsof database tableand re- E——— o — = |
lationships thgoins betweerthe tables. The :

. . i I
user interacts with thelatabasehroughdata s
entry forms browsers simulatorsandquery C—— [ 1958333
screens.
» i ii— ;EN;;] 0z | 0  ocC 0s1 082 ‘ois,: 0s4/0s5| € cclcsc E |EC/ M :’:;Ej — —
% 8] — I “ Figure 13 A surprisirgly largenumber of publications

report data exclusively agraphics. This work screen
simplifies the task oftranslating graphial data backinto
numerical values (From Bolender, 2001A)
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Figurel.2 The data entry process consists of assembling a
hierarchy of parts (entities) by moving from one tab to

the next (left) and then assigning numerical values to the oroan b g

parts (right) (From Bolendeg 2001A). e

1—2 Enteri ngData Figure 1.4 The task ofandardizing data entry to a cm-
mon set d terms andhierarchicallocationsrequires a

Data entry consistof first building a structural familiarity with the literature that comes only after e-

hierarchy for eaclilata point and then mapping tering data from thousands of papers. The resultis a

numerical data to it.Data expressed asl- FjaFa entry format and nomenclature preferred by aan
jority of authors. The green screen servestas tem-

umes, surface, lengtts, and numbes can be plate for data entry (From Bolender, 2001A). Terms and
related toa unit of volume ¢oncentrationor definitions appear at the right.

density), to a structure, or to an average stru

ture. Data entry includesxtracting data from

publications (Figure 1.33tandardizing data

(Figure 1.4)and harmonizing units (Figure 1.5)
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TEREOLOGY DATABASE

| nanometer

nanometer to micrometer = B =
micrometer
millimeter
centimeter E
meter
|| |Kilometer EnterValue: [ 1.

square micrometer

nanometer:
square millimeter innanometers

square centimeter
square meter Press Enter
cubic micrometer
cubic millimeter
cubic centimeter E"f"uo"
cubic meter - | micrometer = nanometer x 0.001
From... To...
Decimal Notation
nanometer to millimeter 0.001
nanometer to centimeter micrometers
nanometer to meter
nanometer to kilometer Scientific Notation
1.000E-03
micrometers

Figurel.5 The unitsscreen simplifies the task of conver
ing from one unit to another(From Bolender, 2001A)
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1-3 Data Catalogse

Thelogical database modelf figure 1.1uses
the hierarchical relationshgof biologicaldata
to maplocationto exposure Byorganizinghe
literature into a single system of connected-d
ta, the model allows us twansformthe data
setinto new formats or cataloguesas the
need arises. For example, Figure 1.6 illustrates
that we can view the literaturene paper at a
time (top), hierarchicdly as individuatables
(middle) or astotal datatables(bottom). More
importartly, relational databasecompletely
changeour relationship to published datdn-
stead ofremainingstatic,databecome dynamic
andcapable of creating new forms of info
mation.

HEBEEEREBRBDHBREEE

EEeng EAXHR2NEE

s/ 33(3(3(3}3/3 9/3/3/3[3/3 3s[a(3(a]s 9 a[a/a[a[3/233[2)3)s/¢

-

Figurel.6 When stored in a relational databas¢he bid-
ogy literature becomes a catalogue of data that can be
expressed in a variety of configurations (From Bolender,
2001A).
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