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Preface  

This is an adventure story, intent on going to 
curious places and engaging problems difficult 
enough to instigate new approaches to problem 
solving.  To keep things interesting, we will de-
liberately increase the risk of our adventure by 
getting ourselves into seemingly impossible sit-
uations on the assumption that the deeper the 
trouble the better the story.  We will do this by 
creating chaos as we wander fortuitously from 
one problem to the next.  Much to our surprise, 
this seemingly aimless approach will serve us 
well in that it will teach us that the main part of 
our job is to figure out that solutions to some of 
our most pressing problems already exist.  To 
enliven the story further, we will cast the prin-
cipal player ς biology - as both hero and antihe-
ro by juxtaposing it, as it exists to how we think 
it exists.             

We already know what happens when we take 
biology apart, but we have absolutely no idea 
what to expect when we put it back together.  
Since this is exactly what we are about to do, 
we find ourselves face to face with one of the 
most intimidating problems imaginable ς bio-
logical complexity.     

The first thing to know about complexity is that 
it comes with its own set of rules.  It considers 
many of our current rules as bubbles, well rip-
ened and ready to burst.  Success, we will dis-
cover, often requires little more than simply 
changing our perspective from upside down to 
right side up.  Acceptable can become unac-
ceptable and unacceptable acceptable.   

Since busting bubbles can have serious conse-
quences, we must proceed prudently.  To be 
fair, we agree at the outset to fix whatever we 
break.  As we work our way through several 
bubbles, the narrative will accumulate a body of 
evidence suggesting that our current approach 
to complex problem solving in biology is sadly 
amiss - largely because it relies heavily on a 
theory structure bound tightly to reductionism.              

Here is the problem.  We have a science ς called 
biology ς that lacks a mathematical foundation 
and can produce data so corrupted by bias and 
biological variation that the original information 
often becomes unrecognizable.  To make mat-
ters worse, we assume that we can study biolo-
gy by reducing its complexity to a simplicity, 
characterize its parts in isolation, and then use 
the resulting information to explain biology as it 
normally exists.  We dig the hole even deeper 
by assuming that our methods allow us to de-
tect biological changes, when often the best 
they can do is detect significant differences be-
tween heavily biased data sets.  Consequently, 
the data we publish all too often stand little 
chance of representing biology, as it is.  

Now, we come to the more challenging part of 
our story.  Biology exists as a mathematical 
powerhouse running systems so complex that 
they defy even our imagination.  In short, biolo-
gy uses rules and algorithms to produce and 
maintain a complexity that we call a phenotype 
(Figure P.1).   

 

Figure P.1  Biology follows a rule-based approach for 
producing, maintaining, and adapting phenotypes.  Our 
adventure becomes one of finding a mathematical route 
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from phenotype to genotype, using published data as our 
compass.    

For biology, a phenotype is an optimized ver-
sion of an intelligent, battle tested, complex 
self-adaptive system.  It represents nature at its 
best.  For us, the phenotype remains largely 
inaccessible because of our collective indiffer-
ence to biology as a complexity.  Given the in-
formation in Figure P.1, however, we now have 
a road map to this phenotype with all the ar-
rows pointing in the right directions.  To em-
brace complexity and reinvent biology as a 
quantitative science, all we have to do is dupli-
cate Figure P.1 using data from the biomedical 
literature (Figure P.2) ς provided we can resolve 
the thorny issue of data access.     

 

Figure P.2  Reading a phenotype mathematically involves 
managing the destabilizing effects of our experimental 
methods and learning the rules of complexity from biolo-
gy.     

The first thing we notice after comparing these 
two figures is that our job looks even harder 
than the one belonging to biology.  By taking 

biology apart to study it, we unwittingly add 
multiple levels of complexity to an already 
complex biology.  Before we can access the 
phenotype, we have to delete the extraneous 
complexities and then figure out how to read 
biology mathematically.   

As the story unfolds, we will eventually discover 
that it takes a complexity to solve a complexity.  
Since we ς as investigators - have little or no 
practical or theoretical experience in dealing 
with biological complexity, we will have to 
come up with a new theory structure for biolo-
gy, one that will guide the way.  In time, we will 
identify a parallel complexity as a major prob-
lem solver because it effectively recruits biology 
to do most of the heavy lifting for us.  A theory 
structure capable of producing these parallel 
complexities gives us the advantage of being 
able to interact with biology mathematically.  If 
we have a problem and can set it up correctly, 
biology always seems to have a solution waiting 
for us.               

Our foray into complexity seems well timed in 
that the biology community currently finds itself 
under attack from our statistical colleagues.  In 
a scathing article, Ioniades (2012) suggests that 
as few as 20% of our published papers may be 
correct, whereas Colquhoun (2014) puts it at 
30%.  These are serious people making serious 
allegations.  Moreover, a recent editorial in the 
Journal of Basic and Applied Social Psychology 
openly rejects the prevailing view that a signifi-
cant difference in biology can be set at the 95% 
(PÄ0.05) level.  In fact, the journal no longer 
accepts papers unless they reach a significance 
level of 99% (PÄ0.01).  If we applied such a rig-
orous standard to our biomedical literature, 
many of our published research papers would 
effectively disappear.   

But, why are statisticians so unhappy with us?  
When we collect data from biology, two major 
factors come into play ς bias and biological var-
iation.  Such factors conspire to reduce both the 
reliability (precision) and validity (accuracy) of 
our data.  This means that we often end up with 
noisy data capable of detecting mainly large 
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changes.  Instead, statisticians want quiet, re-
producible data capable of detecting small 
changes.  This takes us to a largely unappreciat-
ed, but relevant point.  Both bias and biological 
variation derive ς at least in part ς from reduc-
tionist theory and from the preferences of stat-
isticians.     

Although biology allows variation, it allows far 
less than what statisticians would lead us to 
believe.  The isolated data favored by statisti-
cians tend to maximize variation, whereas the 
connected data of biology does quite the oppo-
site.  Moreover, biology is entirely capable of 
supplying us with valid data, which, in turn, we 
can use to minimize the effects of the biases we 
create with our methods.  In other words, if we 
want to, we can produce much quieter data.       

Quiet data interest us here because they show 
the patterns, equations, rules, and algorithms 
biology uses to run its business.  Since biology is 
in the business of optimizing outcomes in com-
plex systems, access to quiet data gives us ac-
cess to a wealth of proprietary information.  As 
the story unfolds, we will learn to use such 
privileged information to our mutual advantage. 

A few, brief examples will help to show where 
this story is going.  First, however, we need to 
plant our feet on solid ground.  Although most 
experts in academic and corporate circles iden-
tify biology as a descriptive science, complexity 
theory takes a decidedly different view.  It pre-
fers reality to convenience.  Biology is a descrip-
tive science now becomes biology is a quantita-
tive science.  By changing the definition, com-
plexity theory compels all parts of our story to 
obey the mathematical rules of biology ς even 
when we have no idea what they might be.  
Given this new reality, part of our mandate be-
comes one of finding and bursting the many 
bubbles created by the assumptions of a de-
scriptive science.  The example to follow shows 
how easy it is to get ourselves into deep trouble 
by bursting a bubble fundamental to experi-
mental biology as it currently exists.     

Most of us would agree that the primary goal of 
scientific studies is to detect changes and to 
explain why they occur.  However, reporting 
changes in biology nourishes an enormous bub-
ble.  Why?  Many laboratories and clinics collect 
data as concentrations, which, in turn, they use 
directly to look for biological changes.  Recall 
that a concentration (A/B) includes two values, 
a numerator (A) and denominator (B).  Drawing 
from our training in chemistry, we know that A 
can change, but B will remain constant because 
it represents a standard unit of volume that 
conveniently cancels out when the change is 
calculated.  This gives us one value for the con-
trol (At0) and another for the experimental (At1) 
- everything appears to be in perfectly good or-
der (D = At1/At0).  Here change (D) works. 

When it comes to comparing concentrations, 
however, chemistry has one set of rules and 
biology another.  In an experimental setting, we 
can expect chemistry to have two variables in 
play ((D = At1/At0), but biology with its added 
load of complexity will have four: (D = (A t1/Bt1) / 
(At0/Bt0) because Bt0 ґ Bt1.  In a biological setting, 
comparing concentrations produces uninter-
pretable results on a vast scale.  Since most 
photometric measurements (i.e., optical densi-
ties) qualify as concentrations (Bolender, 2007, 
2007A), even biochemistry contributes hand-
somely to the bubble when its data are related 
to a biological reference.  This self-induced cha-
os is one of the enduring legacies of our de-
scriptive science.  Compelling evidence for the 
existence of too many variables in play appears 
throughout the literature as disagreements, 
inconsistencies, and irreproducible results.   

In short, there are reasons for concern.  As a 
complex and highly adaptive organism, we can 
adjust to even the harshest of research envi-
ronments.  Unfortunately, we may be reaching 
the limits of our endurance.  A well-trained in-
vestigator with years of experience in the bio-
logical sciences is likely to produce a list of real-
world hazards similar to the one given below.  
Our purpose here in preparing such a list is to 
assure the reader that all the items included 
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therein belong largely to the same problem.  
Moreover, the list serves as a convenient score 
card for the game we are about to play.  The 
solution, as the book will explain, requires little 
more than sliding biology from one theory 
structure onto another ς from reductionism to 
complexity.  The list highlights the realities of 
our working conditions.                                

1. Acceptance of a descriptive science 

2. Acceptance of a methods-driven science 

3. Acceptance of faulty assumptions 

4. Uncontrolled experimental bias 

5. Uncontrolled biological variation 

6. Uncontrolled false positives and negatives 

7. Uncontrolled ambiguity 

8. Inadequate theory structure 

9. Inadequate research model 

10. Inadequate publication model for research data  

11. Inability to reproduce results routinely 

12. Inability to detect biological changes reliably 

13. Inability to quantify phenotypes exhaustively 

14. Inability to deal effectively with biological complexity 

15. Inability to correct methodological distortions 

16. Inability to access biological information 

17. Absence of first principles 

18. Absence of data connectivity 

19. Absence of objective diagnosis and prediction 

20. Absence of mathematical markers 

21. Absence of a universal database for published data 

22. Absence of a common language shared with biology 

23. Absence of published data compatible with biology 

A word of caution is in order.  This book is a 
hard read.  The mere concept of biological 
complexity is still so far beyond our comprehen-
sion that most reasonable people avoid it alto-
gether.  To make matters worse, biology is only 
one part of a much larger problem.  All of our 
methods for collecting and interpreting data 
contribute yet another level of complexity to 
that of biology.  This means that gaining access 
to the core principles of living systems requires 
the unfolding of two interacting complexities - 
simultaneously (Figure P.2).  Since this opera-
tion involves a monumentally tedious array of 

details and arcane arguments, we will accede to 
treating complexity as a simple game that we 
can learn to play with biology ς one move at a 
time.    

Acknowledgments 

The idea of approaching biology as a complexity 
came from a month long workshop held in San-
ta Fe, NM (1987) under the auspices of the San-
ta Fe Institute.  It occurred in response to a rec-
ommendation of the National Research Council 
(1985).  Our group was charged with the task of 
figuring out how to organize all the published 
data of biology in such a way as to reveal gen-
eralizations, connections, and new theory struc-
tures.  The effort resulted in a strategic plan 
accompanied by a list of recommendations 
(Morowitz and Smith, 1987).   

In turn, the insights and enthusiasm generated 
by this workshop led first to a pilot study 
(Bolender and Bluhm, 1992) and then to a grant 
from the National Science Foundation (NSF).  
The goal of the NSF grant was to organize the 
published data of biological stereology within 
the framework of a relational database.  This 
grant along with helpful suggestions from the 
NSF provided the foundation for the on going 
Enterprise Biology Software Project (2001-
Present).  The book summarizes the yearly re-
ports of this project - all of which are currently 
available online (enterprisebiology.com).   

In large part, the success of this project derives 
from the generosity of the stereology communi-
ty in supplying reprints for the stereology litera-
ture database and to the Internet Brain Volume 
Database (Kennedy, et al., 2012) for providing 
online access to MRI data.  Since many of the 
keys to understanding biology as a complexity 
already exist within the biology literature, we 
will use this book to show what our published 
data are capable of unlocking.              
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Introduction 

What is a complexity game and why do we want 
to play it with biology?  Biology plays the com-
plexity game by translating its rules, proce-
dures, and outcomes - stored largely in the ge-
nome - into phenotypes that can do extraordi-
nary things.  A phenotype represents a snap-
shot of an individual at a given point in time, 
linking the past to the present and the present 
to the future.  By playing the complexity game 
with biology, we gain access to this phenotype 
along with a new strategy for interacting with 
biology.     

The Problem 

Biology operates as a complexity, wherein it 
defines and is defined by its parts and connec-
tions.  In spite of this reality, we continue to 
study biology not as a complexity, but as a con-
trived simplicity.  Our current theory structure 
operates on the assumption that we can take 
biology apart, understand the parts, and subse-
quently understand biology.  The problem with 
this approach is that it lacks an appreciation for 
the order that comes from the connectivity of 
the parts and the emergent properties arising 
therefrom.  Moreover, by exchanging reality for 
convenience we invite the penalty of unintend-
ed consequences.       

Few realize, for example, that a theory struc-
ture based on reductionism limits our ability to 
create a mathematical foundation for biology 
analogous to those basic to physics and chemis-
try.  By taking the complexity out of biology, we 
ǳƴǿƛǘǘƛƴƎƭȅ ŀōŀƴŘƻƴ ōƛƻƭƻƎȅΩǎ ŎƻƴƴŜŎǘƛƻƴ ǘƻ 
mathematics.  This explains why biology re-
mains a descriptive science.  The underlying 
problem is one of dimensions.  Reductionism, 
which eliminates complexity by removing its 
connections, also eliminates one dimension of 
the biological information.  The remaining parts 
represent points (data) that now exist in zero-
dimensional space.  (Recall that statistical theo-
ry deals largely with the behavior of such data 

points.)  As a complexity, however, a living or-
ganism must operate in a dimensional space 
higher than zero because it must accommodate 
linear strings (patterns) consisting of parts and 
connections.  The unavoidable truth is that bi-
ology, as an experimental science, operates on 
the risky assumption that we can use isolated 
information existing in zero-dimensional space 
to explain complex events occurring in higher 
dimensionsΦ  !ōōƻǘΩǎ ŘŜƭƛƎƘǘŦǳƭ ōƻƻƪ (Flatland, 
1991) offers a gentle introduction to the prob-
lem of information flow by describing what 
happens when we view the same world from 
different dimensions.                                

Since we can be reasonably confident that biol-
ogy defines and executes its functions by rule, 
our main job here will consist of assembling a 
complexity parallel to the one of biology ς using 
a more inclusive theory structure.  We will dis-
cover that by restoring the complexity we can 
restore the mathematics along with many of its 
rules.  This represents an import step because a 
quantitative approach allows us to play a far 
better game with biology.  

The complexity game we are about to play must 
rank as one the most challenging.  It comes 
without instructions and the user gets to de-
termine the length of the game, the level of dif-
ficulty, and the size of the prize.  When playing 
the complexity game with biology, however, it 
is up to the player - or players ς to discover the 
rules and then figure out how to make the right 
moves on the right playing field.  Experienced 
players have the distinct advantage of knowing 
that teaming up with biology all but guarantees 
a win.  Biology already knows all of the rules, 
moves, and playing fields and seems perfectly 
willing to share this knowledge with us.   

Theory Structure 

The book introduces the reader to complexity 
by playing six games in order of increasing diffi-
culty.  Theory structure plays an important role 
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in that it guides the tasks of constructing the 
playing fields and figuring out to play a given 
game.   

Figure 0.1 indicates that reductionist theory 
directs the first game, whereas the remaining 
games work together to assemble and test a 
new theory structure based on complexity.  No-
tice in the figure that the first two games rely 
exclusively on the post-mortem data of biologi-
cal stereology, whereas the remaining four use 
data collected with MRI from living subjects.  
This distinction is important because we will 
discover that a sharp line exists between these 
two data sources.     

Two remarkable things will happen as we make 
the transition from the simplicity of reduction-
ism to the complexity of biology.  We will de-
velop an unexpected confidence and skill in de-
signing games of increasing complexity and, at 
the same time, take comfort from the discovery 
that the harder the game, the easier the solu-
tion.  Lest we forget, however, our story begins 
at the point where have absolutely no idea 
about how to study biology as a complexity or 
even if it is possible.       

 

Figure 0.1 Playing the complexity game with biology.  
Notice that the games, which begin with stereological 
data derived from post-mortem samples, quickly pro-
gress to MRI data derived from living individuals.  Each 
playing field consists of one or more relational databases.    

Playing a complexity game requires meticulous 
attention to detail and a steely determination 
to recognize reality and play accordingly.  Start-
ing a complexity game with biology, however, 
can be a somewhat unnerving experience be-
cause all such games must begin in the altered 
reality created by reductionism.   

Everyone knows that modern investigative biol-
ogy plays largely by the rules of reductionism.  
This theory structure reduces the complexity of 
a living organism into a subset of isolated parts, 
but, at the same time, its methods quietly in-
troduce artificial properties.  Parts prepared for 
a stereological analysis, for example, may expe-
rience as many as thirty-three operations that 
can distort reality (Bolender, 2003) ς along with 
the post-mortem consequences of going from 
living to lifeless.  In spite of convincing evidence 
to the contrary, most biologists still consider 
reductionist data a valid representation of biol-
ogy.  This assumption, perhaps more than any 
other, deprives biology from enjoying the many 
advantages intrinsic to sciences based on first 
principles.  Put simply, reductionist data will 
continue to make important contributions, but 
they will be largely ineffective in dealing with a 
host of pressing problems swirling around the 
real world of biological complexity.      

Complexity theory takes its rules from biology 
as it normally exists and as it exists for us.  Con-
sequently, we will be dealing with two interact-
ing complexities, one coming from biology and 
the other from the distortions we create by col-
lecting data.  Until the game advances to the 
point where these two complexities become 
separable, we will be playing with a handicap.  
The best we can do in the early games is to min-
imize the distortions and focus our attention on 
finding patterns in data collected with stereo-
logical methods.  Such data are essential be-
cause they allow us to quantify biological parts 
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of all sizes and shapes in terms of volumes, sur-
faces, lengths and numbers.  Moreover, mor-
phological data represent the basic building 
blocks of a phenotype. 

Games 

A complexity game proceeds from one playing 
field to another by making moves that define 
the properties of the subsequent playing field.  
In its turn, each playing field supplies new forms 
of information with new data formats and pat-
terns.  Since patterns reflect underlying rules, 
they usually offer the best clues for figuring out 
what biology is doing.   

In the text, a move begins with a question high-
lighted in blue and concludes with a color-
coded answer - a green text box signals a win, 
red a loss.  The intervening text includes the 
strategy behind the move and supplies the 
methods, results, and interpretations.  If, as the 
game proceeds, you become lost or miss the 
point of an argument, you can always go back 
to the original papers, reports, guides, or soft-
ware packages for help.  (Note: Some of this 
information is available online at enterprisebi-
ology.com)  Many of the details related to the 
stereological methods of data collection and 
manipulation lie well beyond the scope of this 
book and can be found elsewhere (e.g., Weibel, 
1979; Gundersen et al., 1988; Cruz-Orive and 
Weibel, 1990; Bolender et al., 1995; West, 
2012). 

Background 

The central strategy of the project consists of 
extracting data from the biology literature and 
then using them to discover how biology oper-
ates mathematically.  Since biological complexi-
ty resides in the volumes (V), surfaces (S), 
lengths (L), and numbers (N) of its parts and in 
their connections, stereology becomes the 
method of choice because it can estimate these 
parameters with unbiased sampling methods.  
In effect, stereology is ideally suited to the task 
of dealing with biological complexity ς at all 

levels ς in both living and nonliving subjects.  
Moreover, it allows us to access the phenotype 
as a set of nested complexities existing in n-
dimensional space.      

Before the games can begin, however, we have 
to redefine our relationship to the biology liter-
ature.  By entering stereological data into a re-
lational database, they begin to loose their im-
posed isolation by becoming part of a large and 
coherent data set.  The advantage of this new 
arrangement is that it allows us to look for local 
and global patterns in published data.  Often, 
but not always, local will refer to the data of a 
single paper, group or individual, whereas glob-
al identifies data coming from many different 
papers, groups, or individuals.    

Complexity consists of patterns that display 
mathematical properties.  These patterns will 
first appear as absolute data (V, S, L, N) fitted to 
regression lines with coefficients of determina-
tion (R2) equal to 0.9 or better (recall that as the 
R2 approaches 1.0, data points distribute either 
on or close to their regression line).  R2s close to 
one tell us that the relationship of one part to 
another suggests a mathematically defined or-
der.   

Whenever we collect data from biology, how-
ever, our methods invariably introduce uncer-
tainty.  Recall that stereological estimates carry 
an unknown burden of biases related to the 
preparation and analysis of biological samples ς 
particularly when taken post-mortem.  Alt-
hough we can be confident that the design-
based methods of stereology guarantee unbi-
ased estimates derived from both living and 
nonliving sources, we can also guarantee that 
different sources ς living and nonliving - can 
give different estimates for the same parts ς 
depending on the distortions (biases) we intro-
duce experimentally.     

We will discover that one way of mitigating the-
se experimentally induced artifacts is to form 
data ratios that can minimize the effects of the 
distortions.  This strategy also makes sense 
mathematically because the data show that bi-



15 

 

ology exerts a greater level of control on the 
ratio of its parts than on their absolute values.  
Adults of different sizes, for example, frequently 
display the same parts with different volumes, 
but similar ratios.  From this, it follows that ab-
solute values can be expected to exhibit more 
biological variation than when expressed as ra-
tios.  In short, forming ratios effectively mini-
mizes distortions in our data produced by ex-
perimental methods and biological variation.     

Notice that by replacing absolute values with 
ratios, we are following a deliberate strategy 
designed to take our cues directly from biology.  
We will discover that the rewards of such an 
approach can be considerable.  By deferring to 
biology, it will do most of the hard work re-
quired to get us to our initial goal of construct-
ing a parallel complexity ς our proxy for biology 
as it actually exists.    

For convenience, we will begin by defining the 
ratio of parts as a data pair (AX:BY) wherein two 
named parts (A, B) are connected numerically 
by the ratio (X:Y).  (Note: dividing Y by X sets X = 
1.)  By reconfiguring the stereology literature 
database as data pairs, we obtain a universal 
biology database, wherein all the published da-
ta share exactly the same format.  Operational-
ly, this relationship of part (A, B) to connection 
(X:Y) defines a unit (i.e., an element) of biologi-
cal complexity, one with universal connectivity.  
Given this more convenient data type, we will 
be able to find quantitative patterns practically 
everywhere we look.         

Of course, searching for patterns in data aggre-
gated from thousands of papers becomes a 
challenging and very time consuming task be-
cause the ratios (X:Y) supply continuous (i.e., 
analogue) values.  This limitation will be easily 
overcome by assigning each data pair ratio to a 
decimal step (or bin) and then fitting these rati-
os to a regression equation (Y=bXa), wherein the 
values of the exponent a and the coefficient of 
determination (R2) both approach one.  With 
such an arrangement, the power equations 
(Y=bXa) approach linearity (Y=bX) and predict 
the original values with a maximum error not 

greater than ±15%.  In effect, this reduces the 
stereology literature database to roughly 100 
equations, wherein every data point defines 
and is defined by an equation.      

These new decimal bins not only speed the task 
finding local and global patterns, but they also 
play a pivotal role in assembling the playing 
fields for our complexity games.  Moreover, 
chaos theory provides some added cover.  By 
shifting our data from an analog (continuous) to 
a digital (stepped) platform, we move them 
slightly away from their original order and to-
ward the edge of chaos where they become 
infinitely more interesting and informative.     

Notice the strategy in play.  By translating the 
isolated data of individual papers into a large 
digital literature consisting of standardized data 
ratios and equations, our data can detect quan-
titative patterns and generate data sets large 
enough to qualify as a parallel complexity.  By 
using these ratios to assemble playing fields of 
increasing complexity (X:Y ÏX:Y:Z ÏX:Y:ZΧbύΣ 
we can begin to attack difficult problems with 
surprising ease.  Keeping everything on a math-
ematical footing keeps biology in the loop and 
allows us to benefit handsomely from our vast 
investments in basic and clinical research.   

Several examples will serve to illustrate how 
data ratios provide a wealth of new information 
about the mathematical underpinnings of biol-
ogy.  Of special interest is the finding that bio-
logical parts and connections display valences 
and stoichiometries analogous to those found in 
chemistry.  Biology uses the same strategy seen 
for elements and molecules by allowing the 
same two parts to form different ratios.  This 
flexibility greatly increases the number of pos-
sible outcomes - including emergent properties.  
By increasing its potential for variation and 
adaptability, biology presumably improves its 
chances for success and survival.  The same ap-
plies to us.  By becoming privy to a strategy of 
such fundamental importance to biology, we 
find ourselves in a much stronger position to 
ask probing questions about how we currently 
collect and interpret our data.  If biology want-
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ed to give us a friendly nudge in the right direc-
tion, revealing its use of ratios and valences 
would be a clever way of doing it.   

As the chapters unfold, we will discover how a 
given theory structure in biology comes with its 
own set of rules - often producing dramatically 
different results.  Change in biology, for exam-
ple, represents an enormously complex event, 
wherein a given part influences and is influ-
enced by a large number of other parts and 
connections.  In contrast, identifying a change in 
a single, isolated part ignores - almost entirely - 
the true nature of change in biology.  Moreover, 
isolated data rarely contain enough information 
to get to the right answer.  By looking at such 
truncated data through the lens of complexity 
theory, we can begin to understand why theory 
structure plays such an important role in the 
discovery process.    

All games seem to involve an element of luck, 
and our complexity games are no exception.  A 
chance encounter with an Internet database 
containing MRI data from human brains proved 
to be the game changer.  It allows us to make 
key connections between theory structures (re-
ductionism to complexity) and parallel complex-
ities (living to nonliving).  Moreover, by convert-
ing MRI data into mathematical markers, we 
can produce playing fields capable of diagnosing 
disorders of the brain objectively and begin to 
understand the role that quantitative relation-
ships play in the disease process.  

We will also discover that the brain uses many 
of the same parts and connections ς acting as 
modules ς to assemble a wide range of differ-
ent disorders.  Once again, we find biology re-
configuring itself to create new emergent prop-
erties ς a theme repeating relentlessly at all 
levels of size.  The big surprise is that these 
markers reveal a level of complexity so enor-
mous that even the big data technologies of 
today may not be up to the task of explaining 
how these disorders appear and develop.  Of 
one thing, however, we can be certain.  The op-
portunities created by mathematical markers 
for triggering advances in our understanding of 

biology are likely to surpass even our most op-
timistic predictions.        

There is more.  The MRI database of living 
brains can do something that the stereology 
database of post-mortem brains cannot.  Only 
living brains are capable of displaying ς routine-
ly - identical patterns both locally and globally.  
We will use this remarkable property as an acid 
test for determining the validity of biological 
data. 

Consider what this test will tell us.  When we try 
to diagnose disorders in post-mortem brains 
using mathematical markers derived from their 
living counterparts, we will be disappointed 
consistently.  This results from the fact that ex-
actly the same parts in living and nonliving 
brains display different ratios and consequently 
different markers.  We will use this inconsisten-
cy as an opportunity to identify and remove the 
distortions that exist in stereological data when 
they come from nonliving sources.         

Challenges 

Biology as a science faces a major challenge go-
ing forward in that it owns the responsibility of 
unraveling the complex relationships of genes 
to phenotypes.  This means that stereology - 
with its extraordinary ability to quantify struc-
ture - becomes a critical player in working out 
the complexity of phenotypes because it can 
provide estimates for parts and connections of 
all sizes ς seamlessly throughout the biological 
hierarchy.  The immediate challenge for the ste-
reology community becomes one of demon-
strating ς not just assuming ς that equivalence 
exists between data sets derived from living and 
non-living sources.   

Story 

This book summarizes fifteen yearly reports 
(2001-2015) of the Enterprise Biology Software 
Project (Figure 0.2).  Since these reports assume 
a working knowledge of biological stereology, 
readers unfamiliar with this method may miss 
some of the subtleties surrounding the forth-
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coming games, moves, and interpretations.  
Consequently, care will be taken to explain 
what is going on behind the scenes.   

 

Figure 0.2 The Enterprise Biology Software Project ex-
plores the relationship of biology to theory structure to 
outcomes.  It currently provides mathematical access to 
the phenotype and perhaps in time to the genome.   

Before plunging into a seemingly endless pa-
rade of figures and arcane details, it may be 
helpful to begin with a brief summary of the 
complexity games and their outcomes.  This 
offers the reader a quick overview of what to 
expect. 

Perceptions 

Our move into a theory structure based on bio-
logical complexity will introduce a number of 
fundamental changes in the way we think and 
operate.  The following list offers a preview of 
these coming events.   

1. Patterns replace individual data points as 
the primary source of biological infor-
mation. 

2. The biology literature ς expressed as a uni-
versal biology database - becomes a single, 
global experiment to which each new publi-

cation contributes its data.  In effect, the 
literature becomes the phenotype. 

3. Data interpretation requires an active col-
laboration with large scale databases de-
rived from the biology literature.  

4. Experiments involve large numbers of con-
nected patterns (~105Ï107Χ 10n) rather 
than small numbers of isolated data points 
(~10 Ï102). 

5. Change in biology is such a complex event 
that its interpretation requires collabora-
tion on a massive scale. 

6. Valences serve to define structural patterns 
in health and disease.  

7. Data of the basic and clinical sciences inter-
act seamlessly within in the framework of 
universal biology databases. 

8. Decision-making derives from the collective 
knowledge contained within universal biol-
ogy databases.    

9. Playing fields define the games and their 
outcomes. 

10. Gold standards for biological information 
come from living systems. 

11. Parallel complexities operate on rules and 
algorithms consistent with the mathemati-
cal core of living systems. 

12. Interpreting experimental outcomes typical-
ly involves the management of multiple 
complexities simultaneously.   

13. Data from nonliving sources cannot be ex-
pected - a priori - to duplicate those of liv-
ing ones.  

14. The human brain in health and disease ad-
heres to a modular design.  

15. Theory structure influences experimental 
bias and biological variation.   

16. The theories of reductionism and complexi-
ty combine to form a theory structure ca-
pable of supporting the biology enterprise.  

Our current mindset in science revolves around 
the concept of variables (x, y), which relate to 
one to the other by some function (f(x) = y).  In 
contrast, biology seems to prefer patterns ex-
pressed as numerical ratios, which it uses to 
generate complexities and emergent proper-
ties.  Consequently, we will explore the ratio-
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based patterns of biology with stochiometries, 
valences, Fibonacci series, harmonies, design 
codes, polynomials, mathematical markers, 
modules, graphs, and cluster analyses.   

Bigger Picture 

We - as a scientific community - live in a world 
constructed as a simplicity, wherein our biologi-
cal information consists largely of disconnected 
elements.  Biology, on the other hand, lives in a 
complex world wherein these same elements 
exist in a highly connected state.  Although we 
often recognize this inconsistency, we seem 
perfectly willing to accept the ways things are.  
This, of course, imposes limits on what we can 
do.              

By playing the complexity game, we address 
two compelling questions.  How do we go from 
state A (simplicity) to state B (complexity) with 
a minimum amount of discomfort and is making 
such a trip really worth the effort?  In attempt-
ing to answer these questions, we will be put-
ting ourselves in a curious position.  We will 
have to decide if we are going from fantasy (A) 
to reality (B) or just from one fantasy to anoth-
er.  Making such a distinction will require a new 
type of information, one produced by combin-
ing the data and expertise of thousands of our 
best scientists into constructs capable of ad-
dressing real world problems.  In effect, we will 
have to follow the data to wherever they lead.                

Fortunately, the games, which are driven by 
data and often risky moves, will flush out more 
than a few startling surprises along the way.  
Biology - as a neutral referee with impeccable 
credentials ς will serve as the presiding judge.  
Such an arrangement requires that we take a 
first principles approach, one that puts every-
thing to the test by biology and by anyone else 
willing to try.   

The deep understanding to come from this ex-
ercise results in a paradox.  Complexity turns 
out to be far simpler than simplicity ς because 
complexity runs on a mathematical platform, 

whereas simplicity does not.  If we are prepared 
to listen, this is what biology is about to tell us.   

Language 

For a science to work properly, it must include a 
two-way communication system capable of ex-
changing information between the parties in-
volved.  In physics and chemistry, such a system 
exists.  We use first principles embedded in a 
theory structure to interact mathematically 
with the physical world.  Although the science 
of biology uses a similar theory structure (re-
ductionism), it largely lacks first principles, does 
not speak mathematics, and ignores complexity.  
By failing to interact mathematically with the 
natural world, we create a language barrier that 
prevents us from advancing beyond the level of 
a descriptive (soft) science.     

If, as suggested by Adami (2015), we can define 
life as information stored in a symbolic lan-
guage, then our story about biological complex-
ity also becomes a story about language.  By 
following the data, we will find that phenotypes 
can in fact be translated into a symbolic lan-
guage consisting of pieces of information (one-
dimensional strings) that connect in n-
dimensional space, where n Ô 1.  Using data-
bases populated with strings numbering in the 
millions, we will discover ς much to our delight 
ς that we can communicate with biology objec-
tively.  When we pose a question quantitatively, 
biology politely responds with an answer.       

The strings of our symbolic language, which in-
clude alpha names and numeric ratios, identify 
patterns that relate our descriptive names for 
biological parts to the quantitative properties 
given to them by biology.  Since biology uses 
quantitative rules to form patterns, we will do 
the same.  By allowing our strings to grow from 
characters (mathematical markers) to words to 
sentences to stories, we will be duplicating the 
syntax of biology.  In turn, these linguistic 
strings give us a theory structure based on 
complexity, detect first principles, speak math-
ematics, and allow us to set up and solve deli-
ciously difficult problems. 
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Chapter 1  

Game 1 ς Reconnecting Data 

The first game takes its inspiration from a 
month long think tank held under the auspices 
of the Santa Fe Institute, which is summarized 
in a report by Morowitz and Smith (1987).  The 
charge given to the more than fifty participants 
was to figure out how to organize all of the data 
of biology, thereby encouraging new connec-
tions, theory structures, and discoveries. 

Complexity, as we all know, consists of many 
parts and connections with local, global, and 
emergent properties ς all subject to rules.  If we 
approach biological data as a complexity, then it 
follows that all the many parts and connections 
must be quantitative and hierarchical.  The only 
biological method capable of delivering such a 
wide-ranging data set is stereology.  Recall that 
this approach uses design-based sampling to 
estimate the volumes, surfaces, lengths, and 
numbers of biological parts of all sizes.  Herein 
we find the argument for designing, populating, 
and testing a biology literature database popu-
lated with stereological data.  

The first game sets out to reconnect the isolat-
ed data of the stereology literature, first by 
storing them in the same place and then by al-
lowing them to interact.  Note that each game 
begins with a goal followed by several moves 
intended to achieve it.       

Move 1: Can we organize biological data 
within the framework of a relational data-
base?   

The purpose of the move was to take data from 
highly heterogeneous sources (research publi-
cations) and standardize them.  A primary re-
quirement was a database model capable of 
accommodating a majority of biological data ς 
including both structure and function.   

 

This required access to thousands of reprints, 
many of which were generously supplied by 
members the stereology community.  The En-
terprise Biology Software Project was set up as 
a vehicle for developing new technologies and 
returning them along with a yearly report to 
contributing authors.  Currently, the project 
supports investigators working in more than 
forty-five countries.   

1-1 Relational Database 

The relational database model includes a struc-
tural hierarchy consisting of sixteen compart-
ments (hard-coded), twelve structural data 
types (hard-coded), and three functional data 
types (user-defined).  It also includes tables for 
authors, citations, and methods (Figure 1.1).  
Notice that the database model uses two struc-
tural hierarchies ς one for control data (co) and 
the other for experimental (ex) - connected to 
one another and to either a control or experi-
mental data table. 
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Figure 1.1 The logical database model for the biology 
literature includes a collection of entities (boxes) and 
relationships (lines), as defined by rules of relational da-
tabases (From Bolender, 2001A). 

In turn, the logical model of Figure 1.1 becomes 
a physical model (Figure 1.2), wherein entities 
include the columns of database tables and re-
lationships the joins between the tables.  The 
user interacts with the database through data 
entry forms, browsers, simulators, and query 
screens. 

 

Figure 1.2 The data entry process consists of assembling a 
hierarchy of parts (entities) by moving from one tab to 
the next (left) and then assigning numerical values to the 
parts (right) (From Bolender, 2001A).   

 

1-2 Entering Data   

Data entry consists of first building a structural 
hierarchy for each data point and then mapping 
numerical data to it.  Data expressed as vol-
umes, surfaces, lengths, and numbers can be 
related to a unit of volume (concentration or 
density), to a structure, or to an average struc-
ture.  Data entry includes extracting data from 
publications (Figure 1.3), standardizing data 
(Figure 1.4), and harmonizing units (Figure 1.5). 

 

Figure 1.3 A surprisingly large number of publications 
report data exclusively as graphics.  This work screen 
simplifies the task of translating graphical data back into 
numerical values (From Bolender, 2001A). 

 

Figure 1.4 The task of standardizing data entry to a com-
mon set of terms and hierarchical locations requires a 
familiarity with the literature that comes only after en-
tering data from thousands of papers.  The result is a 
data entry format and nomenclature preferred by a ma-
jority of authors.  The green screen serves as the tem-
plate for data entry (From Bolender, 2001A). Terms and 
definitions appear at the right.    
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Figure 1.5 The units screen simplifies the task of convert-
ing from one unit to another (From Bolender, 2001A). 

1-3 Data Catalogues 

The logical database model of figure 1.1 uses 
the hierarchical relationships of biological data 
to map location to exposure.  By organizing the 
literature into a single system of connected da-
ta, the model allows us to transform the data 
set into new formats or catalogues ς as the 
need arises.  For example, Figure 1.6 illustrates 
that we can view the literature one paper at a 
time (top), hierarchically as individual tables 
(middle), or as total data tables (bottom).  More 
importantly, relational databases completely 
change our relationship to published data.  In-
stead of remaining static, data become dynamic 
and capable of creating new forms of infor-
mation.     

 

Figure 1.6 When stored in a relational database, the biol-
ogy literature becomes a catalogue of data that can be 
expressed in a variety of configurations (From Bolender, 
2001A).    

 
























































































































































































